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Abstract 

In compiling the space-group-frequency table of observed 
structures, retention of all the 230 space groups is advo- 
cated. This is based on some of the fundamental aspects 
of chirality. For cases both with space-group chirality (case 
A, e.g. P41, P43 etc.) and without (case B, e.g. P2~, P212121), 
possible asymmetric distribution of observed structures over 
mirror equivalents cannot be ruled out. The need to specify 
a possible physical attribute to characterize a given crystal 
and correlate this to the absolute structure in case B is 
pointed out. 

The question of the treatment of enantiomeric structures 
and enantiomeric space groups in the context of space- 
group frequencies has attracted some debate (Donohue, 
1985; Mighell, Himes & Rodgers, 1983; Srinivasan, 1991). 
Brock & Dunitz (1991) have recently argued that enan- 
tiomeric structures, even if experimentally observed and 
reported, are to be included only once since they are 
isometric and have equal probability of occurrence arising 
out of isoenergy consideration. I would like to advance 
here two principal arguments in support of my earlier 
contention (Srinivasan, 1991) that the statistics should be 
concerned only with observed data, including those enan- 
tiomeric structures that have been observed and reported 
but not those based on theoretical argument alone, as was 
proposed by Donohue. This applies to both (case A) pairs 
of enantiomeric space groups such as P4~ and P43, P6~ 
and P65 etc. and (case B) enantiomeric space groups such 
as P2, P212~21 etc. 

The first argument is that conventional chirality of 
molecular species is a physical reality and it is now well 
established that its unique determination through X-ray 
anomalous scattering is, in principle, possible although it 
is not routinely practised, which is the cause of the uncer- 
tainty in space-group assignments in case A. The uncer- 
tainty, at present, in case B is of course in the assignment 
of the absolute configuration or structure. The argument 
based on isometry for elimination of one of the enan- 
tiomeric structures in counting statistics is no longer 
adequate, although, for all practical purposes, this might 
have sufficed up to now. The isometric argument hinges 
essentially on the equivalence of the corresponding vector 
sets of the enantiomers. Purely from physical arguments 
this criterion is insufficient since the two structures are 
distinct in three dimensions and are separate chiral entities 
each demanding a physical identity in its own right. 

The second argument in this regard is that the statistics 
over the observed data set are to be interpreted as containing 
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information on the global distribution of observed struc- 
tures. Since these are essentially organic chemical struc- 
tures, the observed data (allowing for some fraction of 
chemically laboratory-synthesized enantiomeric structures) 
are by and large a reflection of the statistical distribution, 
at the global level, of the way organic structures resort to 
space-group preference (including chiral space-group pref- 
erence in case A). Although current listings may not be 
reliable due to experimental limitations and uncertainty in 
assignment, there is no reason why precise data cannot be 
built up, at least in the future, for all the space groups. 

In this context some of the findings during the last decade 
and more on the significance of chirality at subatomic and 
subnuclear levels and their implications at the molecular 
and biological evolutionary aspects assume importance. 
Although the breakdown of the isoenergy assumption on 
chiral molecules was mooted as early as 1959 (Ulbricht, 
1959) based on the discovery of parity nonconservation, 
more recent work based on the electroweak force seems to 
provide even more convincing evidence in this respect. In 
fact, the slight preference, based on energy considerations, 
for L-amino acids has been calculated* [for a concise review 
refer to Mason (1984)]. Even though the difference between 
the L and O forms works out to one in 1014 (J mol-t) ,  this 
has evolutionary significance as far as biomolecules are 
concerned, in view of the very large time scale involved. 
From this point of view, for the observed protein structures, 
natural 'peptides etc. based on L-amino acids, the global 
absence of corresponding enantiomeric structures are to be 
construed as an extension of this argument. Although pro- 
teins do not at present form part of the current listings, 
there is no reason to exclude the possibility that other 
organic structures will be influenced by such an asymmetric 
distribution, particularly because of the complex bio- 
chemical pathways involved in the bio-organic synthesis. 
In fact, a critical assessment of the choice of space group 
among chiral pairs and correlation, if any, on chirality at 
the molecular level would seem highly desirable. 

These arguments lead us to conclude that the optimum 
strategy may be the following. 

1. The statistics should be over only observed data sets 
including enantiomeric structures. 

2. Unique space-group assignments (case A) and 
absolute configuration/structure (case B) through tech- 
niques such as anomalous scattering etc. should be 

* Although only organic molecules are cited here, examples from 
the inorganic world, such as quartz, are also available (see, for 
example, Mason 1984). 
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systematically emphasized and encouraged in structure 
reports. 

3. Where uncertainty arises in assignment, a given struc- 
ture may be incorporated in both enantiomeric space groups 
but with half  the weight (which takes care of the probability 
aspect and keeps the observed data set unaltered). 

If these are acceptable it could raise a moot point whether 
or not it is desirable to include in case B two subdivisions 
such as P2÷/P2  - where the +, - symbols refer to, for 
example, chirality at the molecular level where such a 
distinction is possible (such as known L- or D-amino acids). 
Since such prior distinction may not always be possible it 
is necessary to adopt a more specific and experimentally 
determinable physical attribute such as optical rotation in 
the solid state for the specific crystal used for X-ray studies. 
Although the latter may be difficult from the experimental 

point of view, the need for such an identification/charac- 
terization is felt to be highly desirable. 

I would like to thank Professors Brock and Dunitz for a 
preprint of their letter and Professor K. S. Chandrasekaran 
for bringing to my attention recent work at the particle- 
physics level on chirality. 
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Abstract 

A new method of diffraction-pattern calculation is proposed 
and tested on quasicrystals. With use of an appropriately 
defined reference lattice, a structure factor can be well 
approximated by a rapidly convergent series expansion of 
a variable u that describes nearest distances between atomic 
positions and points of the reference lattice. Only the first 
few terms are significant for difffraction-pattern calculation. 
The possibility of using the Debye-Waller  approximation 
is discussed. In this case an appropriate shift of the reference 
structure is required. Calculations based on the Debye- 
Waller formula in real and phason spaces give similar 
results. 

Introduction 

A new approach to the calculation of diffraction patterns 
has recently been proposed (Wolny, 1991; Wolny & Pytlik, 
1992). The diffraction intensity is calculated in real space 
using a distribution of atomic positions around a periodic 
reference lattice of points with period equal to the 
wavelength for a given scattering wave vector. 

For each scattering vector k, a one-dimensional reference 
lattice of points {kt} can be defined such that 

k ' k t  =/cAt = 2Irl, (1) 

where l is an integer. The vectors kz are parallel to the 
scattering vector k and their lengths are given by 

At = Aol, (2) 

where ;% = 2 9 / k  is the wavelength for scattering vector k. 
It should be noted that the vectors kt depend on k, which 
can be expressed by writing kz = kz(k). For any position 
vector r ,  and its component r k , parallel to k, one can choose 
a vector k~ such that (Fig. 1) 

k rn = kt + an, (3) 
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where the length of un is less than or equal to A0/2. Vectors 
k rn, kt and u,, are all parallel. With use of (1) and (3), the 

structure factor for a finite arrangement of N particles at 
positions r ,  and with form factor f ,  can be written as 

N N co 

F(k)= Z fn exp(iku.)= Y. fn Y (iku.)"/mt, (4) 
n = l  n = l  m = O  

and since 

ku, <- 7r (5) 

this series expansion is rapidly convergent and the first few 
terms are dominant. 

The real and imaginary parts of the structure factor are 
given by 

Re [F(k)]  = N(1 - k2(u2)/2! + k4(u4)/ 4 ! -  k6(u6)/ 6! + . . .  ), 

(6a) 

I m [ F ( k ) ] = N ( k ( u ) - k 3 ( u 3 ) / 3 ! + k S ( u S ) / 5 ! - . . . ) ,  (6b) 

where 

N 

(u m) = ( l / N )  Z f , ( u , )  m (7) 
n = l  

is an ruth moment of variable u. Finally, the intensity of 
the diffraction pattern for a given scattering vector that is 

Fig. 1. The variable u describes the shortest distance of the projec- 
tion of the atomic position (filled circles) from the reference 
lattice ('wave lattice' - open circles). 
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